Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0664320180240040330
Journal of the Korean Dietetic Association
2018 Volume.24 No. 4 p.330 ~ p.343
Anti-Bacterial Effect of Lactobacillus rhamnosus Cell-Free Supernatant Possessing Lysozyme Activity Against Pathogenic Bacteria
Lee Ji-Yeon

Lim Hye-Ji
Kim Mi-Sook
Abstract
Recently, there has been a growing demand for natural preservatives because of increased consumer interest in health. In this study, we produced Lactobacillus rhamnosus cell-free supernatant (LCFS) and evaluated and compared its antimicrobial activity with existing natural preservatives against pathogenic microorganisms and in chicken breast meat contaminated with Escherichia coli and Staphylococcus aureus. Lactobacillus rhamnosus cell-free supernatant possessed 30 units of lysozyme activity and contained 18,835 mg/L of lactic acid, 2,051 mg/L of citric acid and 5,060 mg/L of acetic acid. Additionally, LCFS inhibited the growth of fourteen pathogenic bacteria, S. aureus, Bacillus cereus, Listeria monocytogenes, Vibrio parahaemolyticus, Listeria innocua, S. epidermidis, L. ivanovii, E. coli, Pseudomonas aeruginosa, Shigella sonnei, Shi. flexneri, Proteus vulgaris, Pseudomonas fluorescens, and Klebsiella pneumoniae. The antibacterial activity of LCFS was stronger than that of egg white lysozyme (EWL), Durafresh (DF) and grapefruit seed extract (GSE). Additionally, LCFS maintained its antimicrobial activity after heat treatment at 50oC~95oC and at pH values of 3~9. Moreover, LCFS inhibited the growth of E. coli and S. aureus in chicken breast meat. In conclusion, it is expected that LCFS, which contains both lysozyme and three organic acids, will be useful as a good natural preservative in the food industry.
KEYWORD
Lactobacillus, preservative, lysozyme, chicken, pathogenic bacteria
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed